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FOREWORD

This report is a preprint of a paper with the same title which is

scheduled to appear in the January 1983 issue of the IEEE Transactions

on Information Theory (vol. IT-29).
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S• ~INTRODUCTION

Let x 1 1 x2 ,... be observations of independent and identically distributed

(i.i.d.) randomvariables X1,X2 .... Consider testingan hypothesis H0 , under which

X has a probability density function f(x-80 ), against a shifted alternative

H that is, consider the hypothesis pair

v s : Xi ~ f(x-8), a (901versus (1)
H1 : X - - f(x-),8 - 81 > 80.

The Neyman-Pearson fixed sample size (FSS) test for (1) is obtained by

taking M samples and testing [1]

M ZT H1
Z z (2)i~l < H = 0

where zi is the observed realization of the random variable Zi=An(f(Xi-e )/f(Xi-GO)) ,

and the sample size M and the threshold T are pre-chosen so that the test has

error probabilities P(choosing H1IH0 true) and P(choosing H01H1 true) of a and

1-0, respectively. (Since we are mainly interested in asymptotic properties here,

randomization of the test is not included in (2).) Alternate-

ly, Wald's [2] sequential probability ratio test (SPRT) is obtained by

testing, at the n-th sample,

a H1
n (3)Z zr. qb
i-l 0

E(b,a) - take another sample,

where the boundaries a and b are chosen so that the error probabilities
n

are o and 1-0. The sample size N - min(n : E i  (b,a)] is now a random
i- evariable, and the average ample nuwber (ASN) (i.e., the expected value of N)
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depends on the actual distribution of X , i.e., on the actual value of e.

It is well-known that the SPRT (3) has the smallest ASN under H0 and

H1 among all tests with error probabilities no larger than o and 1-0.

However, because the test is not truncated an occasional long test can

result, which is undesirable. Moreover, if the parameter 0 is not the

assumed value 80 or 81, the ASN of the SPRT can be very large. In parti-

cular, if the density f(x) is symmetric and if a - 1-0, then max E(NIe)
e

occurs when 0 - (e0 + e1 /2, where E(NIB) denotes the expected value of N

given that each Xi has the density function f(x-e). This maximum value

becomes worse when a and l-0 are smaller [3]. For example, if a - 1-0 <

0.008, which is the case in many signal detection problems, then max E(NIG)

is larger than the sample size M of an FSS test with the same a and 1-0.

Truncation of the SPRI can be used to prevent this problem; however, one or

both of the error probabilities will be made larger as a result of such

truncation. Quantitative analysis is needed to study the effect of trunca-

tion on the error probabilities and to find a simple design scheme for a

truncated SPRT which gives error probabilities as required. A preliminary study

of such effects is given in (4] where a bound for the probability of terminat-

ing before the truncation point and a bound for the resulting ASN have been ob-

tained. Also, Anderson [5] has studied a truncated test with two converging boun-

daries so that the maximum ASN is reduced. However, the converging boundaries
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are difficult to design and must be chosen from the results of simulation.

Read [6] has studied a related test in which a fixed number of samples is

taken first, and then, after this fixed number, one additional sample is

taken at a time and the test statistic is tested sequentially with two

constant boundaries. It is shown in (6] that the maximum (over BE[8 0,8 1])

ASN is reduced by this technique. However, such a scheme still has occasional

undesirably large sample sizes since the test is not truncated. In [7], the

idea of converging boundaries has been applied to the test of [6]; namely, the

test has two converging boundaries from the start up to a fixed number and

then the boundaries become constant after this fixed number. Similar reduc-

tion in maximum ASN as in (6] is observed in [7], but the test still retains

the disadvantage of occasional long sample sizes.

In this paper, we study further the truncated SPRT by extending the

analysis given in (4]. It is observed here that the truncated test can be

viewed as a mixture of an SPRT and an FSS test. Depending on the chosen

degree of mixture, the truncation point and the constant boundaries can be

easily designed such that the resulting test has approximate error proba-

bilities no larger than given nominal values a and 1-0. In Section I

we describe the procedure for choosing the boundaries and the truncation

point when the required error probabilities are O and 1-$ and when Gaussian

statistics are assumed. Approximate expressions (which are asymptotically

correct as 81 approaches 80) for the ASN and operating characteristic (OC)



14
functions and for the sample-size variance of the truncated test are

given in the same section. These expressions are evaluated in Sec-

tion III, and the advantages of the truncated sequential test become

obvious. Regularity conditions under which the results of Sections II

and III hold for non-Gaussian data are given in Section IV. These

regularity conditions are fairly mild and are satisfied by a large class

of commonly used densities. In Section V, truncated sequential testing

with quantized data is considered, and similar results are found to hold

in this case as well; Further, exact results are computed for the

particular case of two-level 4uantization, and these are seen to agree

closely with results computed using the approximations of Section II.

Notation:

At this point, we define the following notation which will be used

throughout the paper:

P- E(ZiJe) = f'n[f(xel)/f(x-80 )lf(x'e)dx, (4a)

" E(z2Ie) = ffAn[f(x-e)/f(-eo)J0 2 f(x-O)dx, (4b)

A' 2 '" , (4c)

and

A A 2 A a 2 a 2 (4d)
'o 

" go  l , 1  a9 , 1 d"
2

Thus, p. and e are the mean and variance of the random variable Z

from (2) and (3) when the randcm variables Xi have density function f(x-8).
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I. TRUNCATED SEQUENTIAL TESTING FOR THE GAUSSIAN CASE

In this section we assume that the density of the data is Gaussian,

namely f(x)(l/(2-t)'K) exp(-x2/2K 2 ) where K is known, and we will describe

how to choose the boundaries and the truncation point of a truncated se-

quential test correspondingly. Then expressions for the resulting ASN

and OC functions and for the sample-size variance will be given.

For the Gaussian case, the log-likelihood ratio, its mean, second moment,

and variance as defined in (4) are given by

.- 11-e0 )(Xi -  1+8Oo)/2)/K2,  (Sa)

pa - (61-00)(D - (91 +90 )/2)/K2-@1 -_ 0)
2 (r-K)/2, (5b)

01"0)1 1 (5c)

m. (1-10) /K + (81 -G0 ) (r- )2/K4  (5d)
and

2 ( -o) 2/K2 ja2  (5e)

where r ( -e0)/(8 -a0) is the ratio of the difference between the actual

parameter 8 and 80 and the difference between 91 and %0. In subsequent

analysis, we will often use this parameter r instead of 8 so that, when we

consider limitsas 8t approaches %0, we allow e to approach 80 in a way such

that r is constant.

The FSS test (2) with error probabilities a and 1-0 has a sample size

M and threshold T given by

[ (0-l ) + 4-1(1_0)12 (202

and

r a + p6-- (1-0)] (al , (6b)



where 'D(.) is the standard normal distribution function and ,.) is its

inverse. The ASN function and the operating characteristic (OC) function,

L() p (choosingHoe), of the SPRT (3) are given by [21

( (-L(B))a + LO )b + o(I), e 0

E(NIO) - (7)

-ab/ 2 + I = 0

and

eah @  -
eah )_bh(0 ) + o(l), h() # 0
e -hB)e h6

L8) -- (8)

a + O(l) , h() =0

where lim o,'l) 0, and h9) satisfies
1eo

f f(x-9 1 )/f(x-e 0 )]hO) f(x-e)dx = 1 , (9)

which gives h(o) 0 1 and hB 1 ) - -1. For the Gaussian case we have h(e) =

1-2@ -8 0 )/@ 1 -8 0 ). The o(l) termsin above expressions arise from the

excess over a boundary when the SPRT terminates. That this excess diminishes

as 8-80 follows from [2, Appendices A2 and A31.
1 0

We now describe a truncated sequential test with constant boundaries
* b* *

a and b and truncation performed at n-M , as follows: At each observa-

tion n < M test



1a H
n

Z z. b = H 0  (lOa)

(b -a) take another sample,

and at n=M , test

* z1 (lOb)i~l z'I < t* H 0

where t* is a fixed threshold. Let c and I-$ be the error probabilities
under H0 and H of the test (10). Although a and 1-* can be approximated,

the expressions are complicated as we shall see later in this section.

Therefore, designing a , b , M , and t from these expressions is prohibitive.

However, we can turn to simple bounds for o and I-$ and use them for design-

ing the truncated test (10). It was shown in [4) that

c ce SPRT + a FSS (Ila)

and

1-0* (1-OSPRT ) + (1-0FSS), (llb)

where aSPRT and (1-0 SPRT) are the error probabilities of an SPRT with thres-

holds a and b , namely

S 1-exp(b ) (12a)exp(a )-exp~b )

. exp(-a ) - (12b)
SPRT exp(-a *) - exp (-b*)

and where aFSS and (1-0FSS) are the error probabilities of an FSS test with

sample size M and threshold t , namely
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- -* -oM)/() (13a)

1 -0 FSs - M((* a )O(M* ). (13b)

Again, the approximations in (12) arise from neglecting the excess over the

threshold boundary at termination of the test.

The bounds of (11) can be viewed as mixtures of the error probabilities

of an SPRT and those ofan FSS test. In order to design a truncated test with

error probabilities less than a and 1- , we then can set the bounds in (Ii)

to be a and 1-0, namely

USPRT + aFSS m a (14a)

('-SPRT) + (I-sFSS ) = 1-0 (14b)

Thus, we have freedom to choose the degree of mixture between the SPRT error

probabilities and the FSS error probabilities. The choice of the mixture

will determine the truncation point M*, the threshold t*, and the constant

boundaries a* and b*. It will also reflect whether the performance (ASN and

OC functions) of the resulting test will be closer to that of an SPRT or

closer to that of an FSS test or intermediate to these two, as we shall see later.

Note that the values C and 1-0 are used as nominal values in designing a*,

b*, M*, and t* so that a* S O and l-* s 1-0. It ts very unlikely that either

equality, a* - a or 1-0* - 1-0, will result and no attempt is made in the

design to achieve the equalities. Therefore, as numerical results in Sec-

tion III will indicate, the resulting error probabilities a and 1-0 will

usually be smaller than the nominal values a and 1-0 used in the design.

Now let c1 and c2 be two constants between 0 and I that determine the

mixture implied by (IA); i.e., let
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0FSS = 1 acand aSPRT " - Cl)O (15a)

and

(1- FSs) =c2(1-0) and (1-5SPRT) (1-c 2 )(l-0), (15b)

Note that, if c1 and c2 are both zero, then the resulting test (10) is the

SPRT. This is equivalent to saying that the truncation is at M -M . On

the other hand if c 1 - c 2 - 1, then the test (10) is reduced to the FSS test

or, equivalently, the boundaries a and b are - and -- , respectively. If

c1 and c 2 are both 0.5, then the test (10) can be thought of as being half

mixed between anSPRT andan FSS test. Using (12) and (15), we set

a = 2n Cl)] and b = In -2(l)] , (16)

and using (13) and (15), we set

M* -1 C1) + 4-l ( - 2 ( ll1 t0 ) ) 2 (17a)

and
t - [* a[ '-l (c1 ) + P 00$1 (c 2 (l-O))](a/( o'-i 1 )) (17b)

Since a, p 12 and p0 are known, once c1 and c2 are chosen the test (10) can

be determined by calculating a*, b*, M*, and t from (16) and (17). Good

choices for c1 and c2 will be discussed in Section III where numerical

results are presented.

Denote the ASN and OC functions of the truncated test (10)by E(N *8 )

and L (9), respectively. It iE then obvious from the design that
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L ( 1 ) = 1-0 f 1-, (18a)

1-L 00) = a 01 (18b)

and

E*(Ne) minEM*,E(N9)9 , (19)

where E(NJe) is the ASN function of an SPRT with boundaries a and b*, and

is given by (7)-(9) with a and b replaced by a and b , respectively.

In addition to the upper bounds of (18) and (19), approximate expres-

sions for L (9) and E(N I) can also be obtained by

using a Brownian motion approximation to the relevant test statistic.

In particular, the random process B9 (t) = (Z1 + ... + Z * - Je([M t])/Ca(M*)112,
fM ti

0 < t < T, converges weakly to a standard Brownian motion

as a goes to infinity [8, p. 137] for each finite T > 0. (Here, [Mt] denotes

the largest integer less than or equal to Mt.) Therefore, for large M

approximations usinE Brownian motion results are justified.

From [9], the distribution of the first passage time T inf(M t:

(o 9 (Ma, ) (t) + [M*t]) @ (b*,a*) is given by

F (u) - P(T - ulj)

2 a~e2 TT cc(.)
-1+ ]2

(a*b*)2 jl a, T

a ( x i exp (9) ab"2(2 

0) 

-

(20)
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Using this expression the ASN of the test (10), E(N*I6), can be approxi-

mated by

E(N*j6} E (T*18)

I0 udF. (u) + M (1 - Fe(M ))
0

- 2r C(J)(,Y(J)) 2  (l-exp(-II(i))) (21)
i -i

4 1(a*-b*) 
2

where
2

,y(j) -(.)
2  + T N~~* (22a)

CO) J(-l) J [e(r'i )b*  sin(ab*)- Ina* s (22b)

~1() ~ ~'(c?) + V1(c2(1-0))12 (-) +( a*) (2c

and r-(eO)/1-80).

The ASN of (21) can also be evaluated using a result of Anderson's

[5, (5.7)], which yields

E (N_) 8 (a*,b, r -3)L+(-b*,-a*,J-r)]+12[€" 1 (ci ) +4" (c 2 (1-0))* * ,,,* *--

[1-G(a ,b ,r .,) - G(-b ,-a ,,-r))) (2

2
where, with d -M (c2 (1-0)), cp(x) - (l/(2) )exp(-x /2) (i.e.,

cp is the unit normal density), e (.) is defined by



* 12

1 ~ C+ 2 b-(2 l+l) a)e -2cfjb- (J+l)a]

- O(cd + 2b-(214l)a )-2 ic(a-b) ](2b-(2j+l)a)

- [0(-cd + 2 Lt+l)b- (21+l)a )--2c (j-e-) (b-a)
d

- 'O(cd + 2JIbd .e~~a)-2c [ja- (J+1)bJ 12(j+I.)b- (2j+l)a) 1,

e.(a,b,c) O (2a

(2(j+c)b-02(24a)

Z [(2 J~lb-( 2 j+l)a)-t( 2 (ib(+l)a+( b- 2  la]

+ *y (~-(2J + a 12jlb-(2j+l)a)

and G is defined by

G (a,b, c) (P(cd - A + ( ~,2(1-1)b-(2 -1)a -2c ((J-1)b-ja)
d d cdd e

- D(2ib (2j-l)a - d. 2 cj(b-a)

-(2b(2d ) cd).eZC(l8b

2jb-(21+1)a +c)e2c(a-b) 1  (24b)
d

Expressions (21) and (23) give the same result. However, (23) is preferable

for numerical evaluation since (21) nortnaly converges much more slowly than does (23).

Usually, only the first few terms of e(-) and G(-) are needed for numerical

evaluations.
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The second moment of N* can be approximated by calculating

E((T*) 219) using (20), and thereby we obtain

E(N)2 9) E(T)2Is

M
' 2 2

0J u dF6 (u) + (M*) (1-F (M*))

2 -472 C (i)(Y(i))- (1-[14q1(j)] exp (-I(J)). (25)

where C. y, and I are as defined above. The variance of N* is given by

Var6 (N*) - E((N*) 2 1o) - E 2(N*Ie) (26)

and can be calculated using (21) or (23) and (25).

To find an approximate expression for the OC function L*(8) of the

truncated test, we again use Anderson's result [5, (4.68)] and cbtain

L (e) B B(a , b , r) (2 7a)

where, with r and d as previously defined and with A - -rd - 41(dic 1 ), the

function B(-) is given by

B(a, b, r) Z(A t j-l A d ).e - lt(A + d )m

+ C(21 (b-a) - )-02 (1 (b-a)-9a) A)e2a~ )Ie j(-)(-. (27b)
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*** ,b ,* ,rseciey

Under H0 and H, we have c y 1-B(a ,b ,O) and l-* B(a b l), respectively.-

If we consider limiting values of the ASNfunctions by letting I approach

0., the ASN values approach infinity. However, if we consider ((a -80)2/2 ,

times the ASN (i.e., p 1 @ASN) instead, we find that limiting values exist. Therefore,

we will subsequently evaluate and compare the limits of ((e-a0) 2/2K2) times the

2
ASN or sample size. With Pot Pit and a given by (5c) and (5e), we have,

from (6a),

lim [((a -a) 2M/2K2 ] = [¢l + 4-1(1.4)]2 (28)

1- 1C 0 2

From (7) and (8), with h(G) = 1-2( -80)/(01-80) -l-2r, it follows

that, for the SPRT,
e~a(l-2r).i

2 2 2r1. [a+ (b-a) a(er I l- r

e-_ 0 t(91 -e 0 )2E(NI9)/2K2 ]  = (29)

-ab/2 r29

Since approximation by Brownian motion is asymptotically correct as M

approaches infinity (which is the case when 81 approaches 80 ,we can argue

that (21) and (23) lead to



1.5

lim 2 N*e/2 2 1 21T ()(()

Im 1 8  e(N Ie)/2K 2] = ( b) (j)(y(j)) 2  [-exp(-.(j))] (30a)

or

lir a 18)12K2  &(a 2b .r- ) + e(-b ,-a*. -r)

+ [I (c I)4(1 (1.-)c2)] 2 [1 - G(a*,b),r4)

-G(- ,- ,. r)](30b)

where r (B - eo)/(0 -e o ) as previously defined, and e(.) and G(.) are

given by (23) and (24). Similarly, from (25)we can write the asymptotic

second moment of N* as

4 *2 4 -4r -3
tlim ( (el-e0) E((N )e A)/4K 1 2 i)(()) (l-[l+j(j)]exp(-j,(j))).

8I 0 e0  (a*-b*) j-l
(31)

The power function of the FSS test (2) is given by
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OFSS (r) -1 -4 (D cc v,' (2

where T = . [(41(a)) - (4-1(l-))2],which is obtained from (6b). The
2

SPRT has a limiting power function

i - eb (l-2r)

•a(l '2r) b(l-2r) , r .

lim SPRT(r) lim [1-LO)] - (33)

00a/(a-b) r -

We can also obtain a limiting power function for the truncated sequential

test as

lim BT(r) = lim [l-L (8)] = 1 - B(a ,b ,r) (34)
a1. 0 a1 e0

where B(-) is given by (27b).

In the next section we will evaluate numerically the expressions given

by (28) through (34) in order to compare the three tests, the FSS, the SPRT,

and the truncated sequential test.

----------------
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III. NUMERICAL RESULTS

In this section we evaluate the performance of the truncated test in order

to compare it with the SPRT and the FSS test. We wish to compare average sample

sizes when each test is designed to have given a and 1-0. As noted in the pre-

vious section, the ASN is a function of 91-90 and it goes to infinity as

91 approaches 60. In order to avoid the parameter (81-0O), we defined

r - 8 - 0)/(e1 - 8O) and obtained asymptotic expressions for (el -00)2/2K 2

times the ASN (i.e., li 1,ASN), namely expressions (28), (29) and (30). Since

each ASN is multiplied by the same factor, - 8) 2/2K 2 , ratios of two quantities

among (28), (29), and (30) are the limiting ratios of ASN functions as

S1-. For example, the quantity

S[ (01 - 0)2 E(N*18)/2K2  E(Nelim 2= lira M N 1

.0 M/2K2  e-e8I.0 [(eteoO)2M2 2  81-0

is a measure of the asymptotic efficiency of the FSS test relative to the

truncated sequential test.

Instead of plotting asymptotic relative efficiencies lim [E(N*I6)/M
61 -e0

e 80

and lim [E(N*1 )/E(NIe)], we will plot expressions (28), (29), and (30) o!,I I9 1 -8 0

the same graph. In Fig. 1, (28), (29) and (30) are plotted for a - 1-

0.01 with the mixture constants c1 and c2 for the truncated sequential test

both equal to 0.9. It can be seen that the SPRT has uniformly smaller ASN

than the FSS test and that the truncated test has larger ASN than the SPRT ex-

cept when r is near 0.5. As one would expect, the truncated test has performance

between that of the SPRT and the FSS test. Under H0 where r - 0 and H1 where

r - 1, the truncated test exhibits significant savings over the FSS test

(about 40/.). The upper bound for the truncated test given by (19) is also

plotted in Fig. 1. It should be noted that the absolute maximum sample size for
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the truncated test is only about 3% more than the sample size of the FSS test,

while the average sample size is uniformly smaller than the sample size of the

FSS test. Figure 2 shows the same quantities for the alternate case

a l-B 0.001. For these smaller values of error probabilities, the nice

features of the truncated test become more apparent. Now a disadvantage of the

SPRT shows, namely the ASN becomes larger than the FSS sample size for r

between 0.4 and 0.6. However, the truncated test retains uniformly smaller

ASN than the FSS test while significant savings (close to that of the SPRT) near

r= 0 and r- lare still observed and while the truncation point can be kept at

a sample size only a few percent larger than the FSS sample size. Two trun-

cated sequential tests' results are shown in Fig. 2, namely tests with c

c2 - 0.5 and c1 = c2 = 0.9. Note that the ASN for cI = c2 = 0.5 is smaller

than that for c1 = c2 - 0.9 but the truncation point is larger. Therefore,

there is a trade-off between the truncation point and the ASN. Choices of

c and c2 which result in larger truncation points seem to result in (not

necessarily uniformly over 8) smaller ASN's. Figure 3 shows similar behavior

for the case a - 0.0001 and 1-0 = 0.0005. In this case, we note that

max E(NIe) of the SPRT becomes worse. Further, two truncated tests, with

c = 0.83, c2 - 0.1 and c1 - c2 - 0.9, still show ASN's uniformly smaller

than the FSS sample size. However, more savings in ASN than in previous cases

are observed under H0 and Hl. Note that the graphs are skewed in this case

because a 0 1- . Note also that the truncated test with c1 - 0.83 and

c2 - 0.1 has a larger truncation point than the truncated test with c1 =

c2 = 0.9. However, its ASN is not uniformly smaller than that of the other

case. From these numerical results, we conclude that a truncated test can

be designed (with error probabilities less than a and 1-0) by suitable

choices of c1 and c2 so that it retains the advantage of savings in sample
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sizes near r - 0 and r - 1 while the ASN is uniformly smaller than the sample

size of a corresponding FSS test and while the truncation point is only

slightly larger than the sample size of the FSS test.

In order to see how the choices of c1 and c2 affect the truncation point

and the ASN function, we now evaluate p.1-ASN under H0, P 1.ASN under HI,

mgx[plE(N*I9)I, and the truncation point of a truncated test, and plot their

values versus c1 = c2 . The values kIM of the FSS test and 6LE(N190) and

1 E(NIe 1 ) of the SPRT are also plotted in Fig. 4(b) for v - 0.05, 1-0 = 0.01,

in Fig. 5(b) for a l-1 = 0.001, and in Fig. 6(b) for a =1-0= 0.0001. Ratios

of (average) sample sizes are plotted in Figs. 4(a), 5(a) and 6(a). These re-

sults indicate that as c1 and c2 approach zero, E(N*18 0 ) and E(N*181) approach

E(N19 0) and E(NI 1) of the SPRT, respectively, as expected. on the other hand,

as c1 and c2 approach unity, E(N*Il) approaches M of the FSS test for each value

of e. From these graphs, we can choose cI =c 2 between 0 and I so that */M is

not too large, (max E(N*I9))/M is near its mini-,- value, and E(N*10 ) and E(N*1)

are as close to E(NI9 0 ) and E(NI 1) as needed. Of course, the actual choices of

c1 and c2 depend on the designer's judgment as to what is more important to

minimize, M*/M, Cmgx E(N*Ie)]/M, or E(N*18 0)/E(N9 0 ) and E(N*9 1)/E(Nie).

Since max E(N*18) seems to be less sensitive to c1 and c2 for c 1 and c2 between8
0.3 and 0.7, the primary tradeoff is between M and E(N*'80) or E(N *18)
Figures 5 and 6 indicate that good c 1 and c 2 choices seem to be between 0.3 and

0.6 for these two cases.

Further numerical investigation shows that the boundary a is more sensi-

tive than the boundary b* to changes in c 1 . A result is that changing c 1 will

cause more change in E(N*19) for 9 near 91 than change in E(N*l1) for

8 near 80. With c2 fixed, increasing c1 will also increase E(N*181). On

the other hand, b is more sensitive to change in c2, and increasing
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with C1 fixed results in an increase in E(N* 10). Both c1 and C2 have

the same effect on max E(N* 8). Of course, c1 and c2 can be chosen to have
9

different values. Optimum choices of c1 and c2 depend on a given criterion.

For example, M can be set to a maximum allowable value and then c1 and c2

can be chosen to minimize E(N je0), E(N*19), or a weighted average of these

three. Since there are many possible criteria, we will not pursue the

search for optimum choices of c1 and c2 here.

The behavior of the variance of N* is also informative. Tus, we now compace

2 2
lim (, Vara(N*)) of the truncated test with lim (uI Var (N)) of the SPRT, where

the limits are taken as 61 approaches e0 " The first limit can be calculated

from (30) and (31) since Var (N*) - E((N*) 21) -E 2(N*Ie). The second limit,

that for the SPRT, can be evaluated using Wald's results [2, Appendix A.5)

which give approximate formulas for moments of N (the sample size). A87 with

the approximate formulas in Section II, these values are asymptotically

correct as e I--O0 . With these formulas, we obtain Table I, correspond-

ing to those cases of Figures 1, 2, and 3, namely Q' = 1-8 = 0.1, = i- =

0.001, and y - 0.0001 and 1-5 = 0.0005, respectively. Results show that

the untruncated SPRT has large sample size variance when r - (9-e0)/(0l-00)

is near 0.5. This is due to the fact that the test terminates with very

large sample size most of the time under this condition. In contrast, the

truncated test has very small sample size variance when r is near 0.5.

This is so because the truncated test terminates most of the time near or

at the truncation point M* for r near 0.5. Note further that, under H 0 and

2 2Hi , P Var(N*) of the truncated test and il Var 6 (N) of the SPRT are only

slightly different from one another. These phenomena indicate an additional

favorable property of the truncated test as compared to the SPRT.
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It is also of interest to investigate numerical results for the power

functions of (32)-(34)A typical comparison is shown in Fig. 7, where

1 i-0 - 0.1. The SPRT and FSS power functions coincide at r - 0, 0.5,

and 1.0. Between r - 0 and 0.5, the power function of the SPRT is smaller

than that of the FSS while it is larger between r - 0.5 and 1.0. How-

ever, the difference between these two power functions is not significant.

The power function for a truncated sequential test with c1 M 0.4 and

c2 = 0.6 (from (34)) is plotted in the same figure. We see that this

function is smaller than the other two for r < 0.5 and larger for r > 0.5.
* *€

At r - 0 we have C' 1-p ; 0.067, which is smaller than 0.1; this is due

to the fact that C 1-0 0.1 are nominal values used for the design and

they serve only as upper bounds for the actual error probabilities *and 1-P".

To see how close O and l- * are to o and (1-$), we evaluate these using

(27) for various values of c, 1-0, c1 and c2. These values are

tabulated in Table II, from which it can be seen that a and 1-0 are

between 88% to 96% of x and 1-0 for the cases considered.
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IV. THE CASE OF NON-GAUSSIAN DATA

Although we have concentrated thus far on the case where f(x) is a

Gaussian density, the asymptotic results of Sections II and III hold for

non-Gaussian densities as well. In this section, we define a class of

non-Gaussian density functions and show that the previous results apply

when the observation statistics are described by a member of this class.

We use the same notation as in Section II.

Assume the following conditions on f(x):

Al: f(x) is continuous with finite Fisher's information number I(f)

J(f,/f)2f and f' (x) exists and is continuous with a possible

exception at x = 0, where f'(x) denotes the derivative of f(x).

A2: The mean and second moment of the log-likelihood ratio, 4 a and rq,

exist.

A3: There exists a A > 0 such that, for t E [-A,A],

f'(x) f(x+t), f'(x) f,(x+t), f(x+t), and f(x) f,(x+t)

f (x) ),f(x) /fx~ ' K )

are uniformly integrable. (A function f(x,t) is uniformly integrable

for t E [-A,A] if there exists an integrable function g(x) such that

I f(x,t)l - g(x) for all t E [-,A])

Within these assumptions, it can be shown that

Il (81 -0) 2(r -0.5)1(f) + o(@1 -a 0 ) ) (35)
and

2 2 0)2)
a, = ( " 1(f) + 0((q1" ) (36)

where lim o(( -6e0)2)/(B1-80)2 . 0 as6 1 -0 80" prove (35) and (36),

arguments -aral.el to those of the Appendix in [3] can be used. From

(35) and (36), it follows that
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2
1r 2m49/ (3 7a)

10

lir (a (u- 1 ir (-2 (37b)
0 " 1  e 1- 0

To maintain constant error probabilities under H0 and H1 as 81- e0 the sample
.

size M and the truncation point M must approach infinity. Since L and

2
a, are finite by Assumption A2, we have, by the Central Limit Theorem [10],

M* * -  M1.
that ( E Z(i M ' (M) a and ( E Zi -M)/ Oe converge in distribution

i=l i=l ,
to standard normal random variables as M and M go to infinity. Therefore,

(6) and (17) hold asymptotically; i.e.,

lim (M( 1 - 0 ) @ = [l) -l - 2 (38a)

Lim ( [()4 4l(a) (38b)

• 2 2 --1 (I )2
lim (M Pi-0)/2 = [) (c l ) + (c2  )) (38c)

and 
-

0
lim (t*/(M ) )=.U[8" (CV:) - (c2 (38d)

el-('(e0 ))

[M*t]

As in Section II we let B(t) = (i l zi_.e [Mt])/(M )M:1,0s T,for finite

T > 0. Since p and a are finite, the random process B (t) converges weakly to

a standard Brownian motion. As noted above, the operating characteristic

function and the expected stopping time for this random process were found

in [9]. In particular, with T - inf fM*t:(M )"06B0 (t) + P [Mt] (b,a)),

we have

[a(l-L()) + bL@)]/Pe, we 0

E(T e) (39)

{-aba2 + , - 0
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and the corresponding operating characteristic is

2 2 L
e- 2 49 /99 e_2 ope ,)e

L@) = (40)

a Pa-b eO

Now with (37), (39), (40) and the fact that Ba(t) converges weakly to a Brownian

motion, we have for the SPRT (3),

ea(2r-1)a+ (b-a) -a(2r-1) -(r),r*

lir ((q 1-6 0 )2 I(f)E(NIG)/21 = 2r- a -a ea(2r1) -eb(2r1) I I
1 0 ab/2 r=

(41)

which is the same as (29). By similar arguments for the test (10),

2*lir [(e1-80 )2I(f)E(N*e)/2] is given by the right-hand side of (30a) or
81- 6 0

(30b). We note that I(f) - 1/K2 for the normal density with zero mean and

variance K2. Similarly, the asymptotic power functions (32)-(34) carry

over to non-Gaussian densities satisfying assumptions Al through A3.
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V. THE EFFECTS OF DATA QUANTIZATION

In this section we will show that the ASN functions of truncated sequential

tests based on k-level quantized data have the same asymptotic behavior as

those just studied provided that the pre-quantized data density f(x) satisfies mild

regularity conditions. Consider a k-level quantizer with finite output levels

11.9 , 2, .Il k and with quantization points - < s1 < s2 < ... < sk_ 1 < a as

shown in Fig. 8. For convenience let so -- and sk = ,and denote i.i.d.

random variables Q(X1 ),Q(X 2 ),... by YY 2,.... where

Q(x) = 2.i if sj_ I < x ' s., j = 1,2,...,k. (42)J .3

The probability that Y takes the value 2. when X. has a density f(x-e) is
i .

Pj(@) = P(Yi = IjI1) - F(s.-e )-F(sj1.-8), j = 1,2,...,k. (43)

where F(x) is the distribution function corresponding to f(x)

We now consider truncation of a sequential test for (1) based on the
* *

quantized data yly 2 ,... with boundaries a and b and truncation point at
* *

M , namely, for n < M , we test

ka 
H

m n(n) y H (44a)
i=l

E(b a ) take another sample,

*
and, for n M , we test
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kM* k t HI

E M Yi * (44b)
J-1 j t1 < t H0

k
where m. (n) is the number of y 's taking the value AJ, with Z mj(fn) -n at

each stage. To obtain a truncated sequential probability ratio test on

y1,y2 1..., we set I_ An(p 1 )I/P3(90 )), for j-l, ... , k.

Define

k k

Pe E(Yite) - 1t p (e (45)

and

k 
k

= E(Ye) = z pJ(6) ( (46)E (Y71 =1

It is shown in the Appendix that, if f(x) is continuous for all x, then

k = (1-0) 2 (r-0.5)e(k) + o((D1-8)2 (47a)

and

k = -10) e(k) + o(O 1 -e0 ) ) , (47b)

where

k (f(s -a 0 ) - f(sj 1 -a 0 )) 2

e (k) E / - (48)
J=1 F(s 5 -Bo) F (sj o)

We note that e(k) given by (48) is the detection efficacy of a k-level quan-

tizer-detector [11] and can be thought of as a discrete equivalent to the

Fischer infornmation number I(f).
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once we have established (47), we can argue that lm [(81-e 0 ) 2e(k)E(NkI9)/2]
6 -e 00

1 10
is given by expression (30a) or (30b), where Nk is the sample size of the

truncated test (44). Thus by this result and that of Section IV, if f

satisfies assumptions Al through A3, we have

*im *1 (48)
e l-" e [E(N* ) e (k)"

Therefore the truncated sequential test (44) using quantized data has the

same asymptotic efficiency relative to the truncated sequential test (10)

using unquantized data, as does an FSS test based on the same quantized

data compared to an FSS test based on unquantized data. In other words,

the percentage of (asymptotic) savings in sample size of a truncated

sequential test over an FSS test with both using quantized data is the same

as the (asymptotic) sa'ing of a truncated sequential test over an FSS test

with both using unquantized data. As in Section IV, the asymptotic power

functions of (32)-(34) also hold for tests with k-level quantized data

as well. Therefore, the conclusions of Section III carry over for FSS, SPRT,

and truncated sequential tests based on quantized data, as do results in

earlier works which compare quantized FSS tests to unquantized FSS tests

[ I l.

To assess the accuracy of the approximate expressions for ASN and OC

functions derived in Section II, it is interesting to consider the case in

a
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which k - 2 and s1 - (0, + eO)/2. Assuming the density f(x) is symmetric

about x = 0, we then have (from (43)) that pl(e) - l-P2 (q) and P2 (00 ) -i*

1-p2(91). For this case, exact values of E(N* 19), Var (N*), and 0T(9) can

be computed using results from [12,131. Table III compares these exact

values with the approximations based on Brownian motion for the case
* -*

p2(81) 0.7 and a -b - 10 An ((l-p 2 (8l))/p2 (el)) with truncation

points M - 25 and M - 41. Note that 9 appears here only through the

value of p2 (9). It can be seen from this table that the approximations

are all reasonably good in this case, especially that for the ASN.
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VI. CONCLUSIONS

In this paper we have considered truncated sequential location testing

with constant boundaries and abrupt truncation. Design procedures for the

two constant boundaries, the truncation point, and the threshold have been

given for nominal error probabilities under H0 and HI. These procedures

are based on treating a truncated sequential test as a mixture of a sequen-

tial probability ratio test and a fixed sample size test. Formulae for the

operating-characteristic function and the average-sample-number function of

the proposed tests have been given; and, although these results hold in an

asymptotic sense, they may be used as approximations for the nonasymptotic

case. An example comparing exact and approximate values was given in Sec-

tion V. In this example the approximations were good; however, the general

accuracy of these approximations is a topic for further study. If the test

statistic converges rapidly to a Brownian motion, then the approximations

should be good for moderate parameter values. Note for example that, if in

the example of Section V f(x) is a Gaussian density with variance K2, then

f 2 (E1 ) - 0.7 corresponds to a signal-to-noise ratio, (81-6 0 ) 2 /K2 , of

approximately 1.1, which is moderate.

The numerical results of Section III demonstrate that a properly designed

truncated sequential test can retain the advantage of sample savings of the

SPRT under the hypothesis and the alternative while it eliminates the dis-

advantages of the SPRT of possible large sample size when the true location

parameter is different from those assumed for the hypothesis and the alterna-

tive. For given error probabilities, the truncated sequential test has a

uniformly smaller ASN function than a corresponding FSS test while the ASN's

under o and H, are close to those optimum values of the SPRT. Therefore,

the truncated sequential test should be preferred to the SPRT if long runs
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cannot be tolerated and if parameter mismatching is possible, and it should

be preferred to the FSS test if the small amount of additional complexity

required for the truncated sequential test can be tolerated.

Before concluding, we remark that performance comparisons between

SPRT's and FSS tests have been investigated in several studies including

[3] and [141-[16]. Also, the relative performance of two non-truncated

sequential tests with the same constant boundaries has been investigated

by Lai (171. It was shown there that the relevant asymptotic relative

efficiency is given by the ratio of the efficacies of the two test statis-

tics, as is the case when comparing two FSS tests [18]. Note that in [171

the tests under comparison have the same decision boundaries and only the

test statistics are different. However, in our study, we have compared

tests with the same test statistic, namely the probability ratio, but with

different decision boundaries: an FSS test with a fixed number of samples,

an SPRT with two fixed boundaries, and a truncated sequential test with two

fixed boundaries (different from those of the SPRT) and a truncated sample

size. Asymptotic (in the sense that the alternative approaches the hypo-

thesis) comparison between a truncated sequential test and an FSS test or

an SPRT has not been previously investigated. This work is, therefore, com-

plementary to the previous works mentioned above. Finally, we note that Berk

[19] has studied asymptotic efficiencies of sequential tests in a different

sense; in particular, the asymptotics in [19] are as the error probabilities

approach zero.
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APPENDIX: DERIVATION OF EQ. (47)

To show (47a) we write

k k

Pe wJ-I (Pj(8O) + 6je )1n (1 + A /P (60)) (A. 1)

where Aj. = (F(sj ) -F(sj - 0 )) - (F(sj. 1 -.8 ) - F(s J_ 1 -a 0)) and

A (F(s -91)-F(s -eO)) - (F(s 1 -6) - F(s . 1 -80)). We expand

222

In (1 + Aj I/pj 00)) = (Ai /pj 1 (0 ) )) -0. 5(Aj I/pi ( 0))2 + o(A i ), where

lim O(A 2 )/A 2 0 as A. 0. Using this expansion, we can write

A2  2
kk k i j- o je k 2Il A + E + - 2 E 2- E)2

i j1 Pi 0 j=. ((6 0 )) j=1

(A. 2)

k k k
Since Z p(p1  E P 0 = 1, we must have Z A. = 0. Now, using a Taylor

jw1 j=1 j=11
Series expansion of F(x -e 1 ), we have

a= F(s - j1 F(sj. 1 - 01 +F(sj 1 - 9 0 )

- F(s -9 0 )- 0- O)f(s. a F(s.'- O) -F(sj "0+(19 1 -eo)f(s. -e +

+ F(s. "- 0 )

- -(9 1 - e0 )(f(s -  )- f(s 1 - 8  )) , (A. 3)

where a ** E (0,1 and, similarly,

Aje - -(a -80)(f(sj - 8* ) - f(sj. I - 6**)) (A. 4)

where ., 8** E (80,9) With these values we have
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r__"_0)2 (f(s -. ) -f(s 1 - **)(f(s -e )-f~s 11 -8 ))
Pjo) r 1  0) F(s I -8 o ) -F(sj.. - o 0

(A. 5)

2 *)- 2 (f (s, - a f(sj - *) 2

p( 0 )  = 1 0 F(s-0 ) F -9 -e ) ' (A. 6)

and

A 2  s *) - f(s -a f -* ** 2

(pj i 0)) 2  1 0(F(s a-0)- F~s j 1 -8 0)) 2

- o(( 1 - 0 ) 2 ) (A. 7)

where r = (8 -a0)/(91-60). In addition, we have o(A ) = O((1-a 2;

therefore

k )2
un =k (r- ) k (f(s a f (S.' - 0 ) )

li a~ 72 = (r(-S -e 0  - 1-6 0) (A. 8)

aic f- 0(x1) sl continuous, J- a 0)a olos

since f(x) is continuous, and (47a) follows.

For (47b), we write

k
we E Z (pj(0)+ Aj) [n(l + A 2/p ( (A. 9)

wih2 ~ 2 2With [A(n(A+ /P 1o))2 O (A /p ( 0 )) o(A), we have

2 
k A a 

2 )

E + E Z2 + o(A ). (A.10O)

J- Pj 0 ) J-1 (p)) 2  ( (0)

With (A. 6) and (A. 7) for A2/p(e 0 ) and A A2/(p(9 0 )) 2 , (47b) follows.
J j je
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and c2 . ' = 1-0 = 0.0001.

(a) ASN ratios

(b) pl.ASN

Figure 7. Power functions of the truncated test, the SPRT, and the FSS test.

a - 1-0 - 0.1.

Figure 8. A k-level quantizer.
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Figure 1 (Tantaratana and Poor)
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